| Chemistry
Chapter 8 – Covalent Bonding | Name
Date | | |---|--|--| | Covalent Bonds | | | | Formed between Covlent compounds e electrons in its highest occupied energy level Covalent compounds are often called Whereas ionic compunds are called formula a | . | | | Properties of Molecular Compounds | | | | Do not electric curre | ent in solution. | | | Have solubilities. May or may not dissolve Have lower | | | | Many are or | | | | Diatomic Molecules Comprised of atoms. Gases that exist as diatomic molecules are often referred to as the List of the "Super 7": | CCCIT Table Winnerschip The Columns of Colu | | #### **Covalent Bond Formation** - Atoms will form single, double, triple or a combination of bonds to get to an octet of electrons. - The HONC Rule - always put the element that wants to form the most bonds in the center and place the other elements around! - o <u>Hydrogen</u> (and <u>Halogens</u>) form one covalent bond - o Oxygen (and sulfur) form two covalent bonds - One double bond, or two single bonds - o <u>N</u>itrogen (and phosphorus) form three covalent bonds - One triple bond, or three single bonds, or one double bond and a single bond - o Carbon (and silicon) form four covalent bonds. - Two double bonds, or four single bonds, or a triple and a single, or a double and two singles. #### **Creating Lewis Dot structures for Covalently Bonded Molecules** - 1. Determine the number of valence electrons from all atoms. - ➤ Also include any charges on compounds (polyatomics) - 2. Put the atom that wants to form the most bonds in the center (if more than 2 elements) - Usually the first atom in the compound - 3. Connect all atoms with a single bond - 4. Fill the peripheral atoms with electron pairs to form an octet - 5. Fill the central atom with enough electrons to form an octet - 6. If there are not enough electrons, you might need to form a double or triple bond - 7. In some cases, you will have electrons left over...place them around the central atom (even if they total more than 8). - > Exceptions to the rule are possible | | | • | • | |---|--------|-----------------------|-------------------| | • | Single | Covalent Bonds | | | | 0 | 1 single bond = _ | shared electrons. | | | 0 | Examples: | | | | | ■ H ₂ | | | | | ■ F ₂ | | | | | ■ I ₂ | | | | | | | ■ CH₄ H_2O ■ SO₄²- #### o Single Bond Practice - Cl₂ - C₂H₆ - OH⁻ - NH₄⁺ - CH₃Cl - PH₃ | | 0 | 1 double bond = | shared electrons. | | |---|--------|---------------------------------|---------------------------|---------| | | 0 | | a of valence | that is | | | | ` | NOT shared between atoms. | | | | 0 | Examples: | | | | | O | • O ₂ | | | | | | 02 | | | | | | | | | | | | \bullet CO ₂ | | | | | | _ | | | | | | | | | | • | Triple | Covalent Bonds | | | | | 0 | 1 triple bond = | shared electrons. | | | | 0 | Examples: | | | | | | ■ N ₂ | | | | | | | | | | | | | | | | | | HCN | | | | | | | | | | | | | | | | | | ■ CO | | | | | | | | | | | | | | | | | 3.4. | LTD 4* | | | | • | | Practice | | | | | 0 | H_2O_2 | | | | | | | | | | | | | | | | | 0 | PCl ₃ | | | | | | | | | | | | | | | | | 0 | CN- | | | | | | | | | | | | | | | | | 0 | MnO_4 | | | | | 0 | 1411104 | | | | | | | | | | | | II C | | | | | 0 | H_2S | | | | | | | | | | | | | | | | | 0 | CCl ₄ | | | | | | | | | | | | | | | | | 0 | CH ₂ Cl ₂ | • Double Covalent Bonds o NCl₃ # Warm-up | | write the formulas, then draw Lewis dot structures C or MOLECULAR compounds. | for the following | | |-------|--|-------------------|-----------| | 0 | Silicon tetrachloride | | | | 0 | Chlorine monofluoride | | | | 0 | Sodium chloride | | | | 0 | Phosphorus tribromide | | | | 0 | Zinc (II) sulfide | | | | 0 | Nitrogen trihydride (ammonia) | | | | 0 | Dicarbon dihydride (ethyne) | | | | 0 | Dicarbon tetrahydride (ethene) | | | | Excep | otions to the Octet Rule | | | | | Some atoms in a molecule can have | or | valence | | | electrons. | | | | 0 | Examples: NO | | | | | ■ BF3 | | | | 0 | Some atoms in a molecule, in particular, | | | | | sometimes expand the octet to include | or | electrons | | 0 | respectively. Examples: | | | | O | ■ PCl ₅ | | | | | | | | | | ■ SF ₆ | | | | 0 | Electrons rapidly | back and forth between different electron dot structures. | | |---|--|---|--| | | Seen primarily in co | ompounds containing double bonds. | | | 0 | Examples: | | | | | Carbonate | Nitrite | Nitrate | | | # Polar Bonds – not all sharing is equal • Nonpolar Covalent: • Polar Covalent: o The ______ atom attracts the electrons more strongly and gains a slightly _____ charge. o The _____ atom has a slightly _____ charge. • Electronegativity Differences o Use the EN values from the periodic table to subtract the larger value from the smaller. o Look at the ranges to decide what type of bond. • 0.0-0.4 nonpolar covalent • 0.4-1.7 polar covalent ■ 1.7-4.0 ionic o Examples: HCl ■ Cl₂ H_2O **Polar Molecules** The presence of a polar bond in a molecule______, not not always, makes the entire molecule polar. • A dipole is a molecule that has 2 poles. To decide if a molecule with polar bonds in overall polar you must look at the overall shape. o If the "pulls" cancel out because they are , then the molecule o If the "pulls" do not cancel out because they are ______, then the molecule is ______. **Examples:** o H₂O \circ SiO₂ o CF₄ o CH₂Cl₂ #### **Intermolecular Attractions** - Attractions between molecules, not _______ - Weaker than either ionic or covalent bonds! #### • London Dispersion forces (Van der Waals) - o Weakest - o Caused by ______. - pairs of molecules experience this force – even nonpolar molecules. symmetrical distribution unsymmetrical distribution #### • Dipole Interactions (Van der Waals) - o Attraction between 2 ______. - O The slightly _____ region of a polar molecule is _____ attracted to the slightly ____ region of another polar. ### • Hydrogen Bonding - Strongest - o Must be _____ molecules - 1 atom must be H - 1 atom of O, N, Cl or F ## **Bond Dissociation Energy** - The energy required to ______ a bond. - o **Units:** kJ/mol - o Examples: - Cl₂ - H₂O - CH₄ - CH₂Cl₂ - CO₂ - C₂H₂