Chemistry Chapter 8 – Covalent Bonding	Name Date	
Covalent Bonds		
 Formed between Covlent compounds e electrons in its highest occupied energy level Covalent compounds are often called Whereas ionic compunds are called formula a	.	
Properties of Molecular Compounds		
Do not electric curre	ent in solution.	
 Have solubilities. May or may not dissolve Have lower 		
Many are or		
 Diatomic Molecules Comprised of atoms. Gases that exist as diatomic molecules are often referred to as the List of the "Super 7": 	CCCIT Table Winnerschip The Columns of Colu	

Covalent Bond Formation

- Atoms will form single, double, triple or a combination of bonds to get to an octet of electrons.
- The HONC Rule -

always put the element that wants to form the most bonds in the center and place the other elements around!

- o <u>Hydrogen</u> (and <u>Halogens</u>) form one covalent bond
- o Oxygen (and sulfur) form two covalent bonds
 - One double bond, or two single bonds
- o <u>N</u>itrogen (and phosphorus) form three covalent bonds
 - One triple bond, or three single bonds, or one double bond and a single bond
- o Carbon (and silicon) form four covalent bonds.
 - Two double bonds, or four single bonds, or a triple and a single, or a double and two singles.

Creating Lewis Dot structures for Covalently Bonded Molecules

- 1. Determine the number of valence electrons from all atoms.
 - ➤ Also include any charges on compounds (polyatomics)
- 2. Put the atom that wants to form the most bonds in the center (if more than 2 elements)
 - Usually the first atom in the compound
- 3. Connect all atoms with a single bond
- 4. Fill the peripheral atoms with electron pairs to form an octet
- 5. Fill the central atom with enough electrons to form an octet
- 6. If there are not enough electrons, you might need to form a double or triple bond
- 7. In some cases, you will have electrons left over...place them around the central atom (even if they total more than 8).
 - > Exceptions to the rule are possible

		•	•
•	Single	Covalent Bonds	
	0	1 single bond = _	shared electrons.
	0	Examples:	
		■ H ₂	
		■ F ₂	
		■ I ₂	

■ CH₄

 H_2O

■ SO₄²-

o Single Bond Practice

- Cl₂
- C₂H₆
- OH⁻
- NH₄⁺
- CH₃Cl
- PH₃

	0	1 double bond =	shared electrons.	
	0		a of valence	that is
		`	NOT shared between atoms.	
	0	Examples:		
	O	• O ₂		
		02		
		\bullet CO ₂		
		_		
•	Triple	Covalent Bonds		
	0	1 triple bond =	shared electrons.	
	0	Examples:		
		■ N ₂		
		HCN		
		■ CO		
	3.4.	LTD 4*		
•		Practice		
	0	H_2O_2		
	0	PCl ₃		
	0	CN-		
	0	MnO_4		
	0	1411104		
		II C		
	0	H_2S		
	0	CCl ₄		
	0	CH ₂ Cl ₂		

• Double Covalent Bonds

o NCl₃

Warm-up

	write the formulas, then draw Lewis dot structures C or MOLECULAR compounds.	for the following	
0	Silicon tetrachloride		
0	Chlorine monofluoride		
0	Sodium chloride		
0	Phosphorus tribromide		
0	Zinc (II) sulfide		
0	Nitrogen trihydride (ammonia)		
0	Dicarbon dihydride (ethyne)		
0	Dicarbon tetrahydride (ethene)		
Excep	otions to the Octet Rule		
	Some atoms in a molecule can have	or	valence
	electrons.		
0	Examples: NO		
	■ BF3		
0	Some atoms in a molecule, in particular,		
	sometimes expand the octet to include	or	electrons
0	respectively. Examples:		
O	■ PCl ₅		
	■ SF ₆		

0	Electrons rapidly	back and forth between different electron dot structures.	
	 Seen primarily in co 	ompounds containing double bonds.	
0	Examples:		
	Carbonate		
	Nitrite		
	Nitrate		

Polar Bonds – not all sharing is equal • Nonpolar Covalent: • Polar Covalent: o The ______ atom attracts the electrons more strongly and gains a slightly _____ charge. o The _____ atom has a slightly _____ charge. • Electronegativity Differences o Use the EN values from the periodic table to subtract the larger value from the smaller. o Look at the ranges to decide what type of bond. • 0.0-0.4 nonpolar covalent • 0.4-1.7 polar covalent ■ 1.7-4.0 ionic o Examples: HCl ■ Cl₂ H_2O **Polar Molecules** The presence of a polar bond in a molecule______, not not always, makes the entire molecule polar. • A dipole is a molecule that has 2 poles. To decide if a molecule with polar bonds in overall polar you must look at the overall shape. o If the "pulls" cancel out because they are , then the molecule o If the "pulls" do not cancel out because they are ______, then the molecule is ______. **Examples:** o H₂O \circ SiO₂

o CF₄

o CH₂Cl₂

Intermolecular Attractions

- Attractions between molecules, not _______
 - Weaker than either ionic or covalent bonds!

• London Dispersion forces (Van der Waals)

- o Weakest
- o Caused by ______.
- pairs of molecules experience this force –
 even nonpolar molecules.

symmetrical distribution

unsymmetrical distribution

• Dipole Interactions (Van der Waals)

- o Attraction between 2 ______.
- O The slightly _____ region of a polar molecule is _____ attracted to the slightly ____ region of another polar.

• Hydrogen Bonding

- Strongest
- o Must be _____ molecules
 - 1 atom must be H
 - 1 atom of O, N, Cl or F

Bond Dissociation Energy

- The energy required to ______ a bond.
 - o **Units:** kJ/mol
 - o Examples:
 - Cl₂
 - H₂O
 - CH₄
 - CH₂Cl₂
 - CO₂
 - C₂H₂